Sutured Khovanov homology distinguishes braids from other tangles
نویسندگان
چکیده
We show that the sutured Khovanov homology of a balanced tangle in the product sutured manifold D×I has rank 1 if and only if the tangle is isotopic to a braid.
منابع مشابه
Properties and applications of the annular filtration on Khovanov homology
The first part of this thesis is on properties of annular Khovanov homology. We prove a connection between the Euler characteristic of annular Khovanov homology and the classical Burau representation for closed braids. This yields a straightforward method for distinguishing, in some cases, the annular Khovanov homologies of two closed braids. As a corollary, we obtain the main result of the fir...
متن کاملKhovanov Homology for Alternating Tangles
We describe a “concentration on the diagonal” condition on the Khovanov complex of tangles, show that this condition is satisfied by the Khovanov complex of the single crossing tangles (!) and ("), and prove that it is preserved by alternating planar algebra compositions. Hence, this condition is satisfied by the Khovanov complex of all alternating tangles. Finally, in the case of 0-tangles, me...
متن کاملOpen-closed TQFTs extend Khovanov homology from links to tangles
We use a special kind of 2-dimensional extended Topological Quantum Field Theories (TQFTs), so-called open-closed TQFTs, in order to extend Khovanov homology from links to arbitrary tangles, not necessarily even. For every plane diagram of an oriented tangle, we construct a chain complex whose homology is invariant under Reidemeister moves. The terms of this chain complex are modules of a suita...
متن کاملAdditional Gradings in Khovanov homology
The main goal of the present paper is to construct new invariants of knots with additional structure by adding new gradings to the Khovanov complex. The ideas given below work in the case of virtual knots, closed braids and some other cases of knots with additional structure. The source of our additional grading may be topological or combinatorial; it is axiomatised for many partial cases. As a...
متن کاملKhovanov Homology Detects the Trefoils
We prove that Khovanov homology detects the trefoils. Our proof incorporates an array of ideas in Floer homology and contact geometry. It uses open books; the contact invariants we defined in the instanton Floer setting; a bypass exact triangle in sutured instanton homology, proven here; and Kronheimer and Mrowka’s spectral sequence relating Khovanov homology with singular instanton knot homolo...
متن کامل